Atmospheric correction of ocean-color sensors: effects of the Earth's curvature.
نویسندگان
چکیده
We investigate the influence of the curvature of the Earth on a proposed atmospheric-correction scheme for the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) by simulating the radiance exiting the top of a spherical-shell atmosphere and inserting the result into the proposed correction algorithm. The error in the derived water-leaving reflectance suggests that the effects of the curvature are negligible for solar zenith angles (θ(0)) ≤ 70°. Furthermore, for θ(0) > 70° the error in atmospheric correction can usually be reduced if the molecular-scattering component of the top of the atmosphere reflectance (ρ(r)) is computed with a spherical-shell atmosphere radiative transfer code. Also, for θ(0) > 70° the error in atmospheric correction in a spherical-shell atmosphere, when ρ(r) is computed with a spherical-shell model, can be predicted reasonably well from computations made with plane-parallel atmosphere radiative transfer codes. This implies that studies aimed at improving atmospheric correction can be made assuming plane-parallel geometry and that the investigator can be confident when θ(0)> 70° that any improvements will still be valid for a spherical-shell atmosphere as long as ρ(r) is computed in spherical-shell geometry. Finally, a scheme for computing ρ(r) in a spherical-shell atmosphere in a relatively simple manner is developed.
منابع مشابه
Atmospheric Correction Algorithm for the Ocean Color Sensors
The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994)...
متن کاملRetrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm.
The second generation of ocean-color-analyzing instruments requires more accurate atmospheric correction than does the Coastal Zone Color Scanner (CZCS), if one is to utilize fully their increased radiometric sensitivity. Unlike the CZCS, the new instruments possess bands in the near infrared (NIR) that are solely for aiding atmospheric correction. We show, using aerosol models, that certain as...
متن کاملComparing the ocean color measurements between MOS and SeaWiFS: a vicarious intercalibration approach for MOS
The modular optoelectronic scanner (MOS) is a German instrument that was launched in the spring of 1996 on the Indian IRS-P3 satellite. With the successful launch of NASA’s Sea-viewing Wide Field-of-view Sensor (SeaWiFS) in the summer of 1997, there are now two ocean color missions in concurrent operation, and there is interest within the scientific community to compare data from these two sens...
متن کاملSensor Capability and Atmospheric Correction in Ocean Colour Remote Sensing
Accurate correction of the corrupting effects of the atmosphere and the water’s surface are essential in order to obtain the optical, biological and biogeochemical properties of the water from satellite-based multiand hyper-spectral sensors. The major challenges now for atmospheric correction are the conditions of turbid coastal and inland waters and areas in which there are strongly-absorbing ...
متن کاملSurface-roughness considerations for atmospheric correction of ocean color sensors. I: The Rayleigh-scattering component.
The first step in the coastal zone color scanner (CZCS) atmospheric-correction algorithm is the computation of the Rayleigh-scattering contribution, Lr(r), to the radiance leaving the top of the atmosphere over the ocean. In the present algorithm Lr(r), is computed by assuming that the ocean surface is flat. Computations of the radiance leaving a Rayleigh-scattering atmosphere overlying a rough...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 33 30 شماره
صفحات -
تاریخ انتشار 1994